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The optimization problem is considered for a partial differential equation of 
elliptic type, The boundary of the domain in which the equation is given em- 
erges as the control function and is to be determined from the condition of the 
extremum of the integral of the solution of the boundary value problem. Seek- 
ing the extremals is reduced to solving a variational problem without differen- 
tial constraints. Necessary conditions for optimality are obtained, and shapes 
of elastic bars possessing the maximum stiffness under torsion are found with 
their aid, 

1. Formulation of the optimirrtfon problem and aliminrtion 
of the differentirl conrtrrint, We consider a boundary value problem forthe 
partial differential equation 

The coefficients a, b, c of (1.1) are assumed given functions of the variables 2, y, 
and m > 0 is a given constant, I? is the boundary of a simply connected domain D. 

Let us formulate the following optimization problem. Determine the smooth closed 
line I’ satisfying the isoperimetric condition of the constant area of the domain D 

ss axay = s 
D 

(1.3) 

and such that a maximum of the integral functional 
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K (r) = (1 cp (x, y) dx dy --> maxr 
D 

(1.4) 

is obtained for the solution cp (x, y> of the boundary value problem (1, l), (1.2) with a 
given boundary r . The quantity $ in (1.3) is a specified constant, 

The optimization problem (1.1) - ( 1.4) refers to isoperimetric variational problems 
with differential constraints. The role of the diffe~ntial constraint, of the iso~~me~ic 
condition, and of the control function is played, respectively, by (1. l), (1.3) and the shape 
of the contour I?. 

We shall henceforth assume that the coefficients of (1.1) satisfy the conditions 

a > 0, nh - c2 > 0 (I* 5) 

The assumption (1.5) permits reduction of the optimization problem (1.1) - (1.4) to 
a variational problem without differential constraints. In fact, for a given contour l? and 
upon compliance with condition (1.5) the solution of the boundary value problem (1. l), 
(1.2) determines a minimum of the functional 

J = #(a%k2 - ~CCP,CP, + bqg2 - 2m(p) da: dy (1.6) 

considered in the class of functions g, = cp (z, y), satisfying the boundary condition 
(1.2). It is easy to see the validity of this assertion by writing the Euler equation for the 
functional (1.6) and noting that it agrees with (l.l)las wellas noting that the known suf- 
ficient conditions for the absolute minimum of a quadratic functional (see [l], say) agree 
in the case under consideration with the inequalities (1.5). 

To accomplish the reduction to a problem without differential constraints, let us show 
that J=-mmK (1.7) 
holds for the function cp (x, y), minimizing the functional (1,6) under the condition 
(1.2). The equality (1.7) is a direct extension of the relationship for the Poisson equa- 
tion [2] to (1.1). It results from the following transformation in which (1. I), (1.2), ( 1.4)‘ 
(1.6) are used : 

mK =&madsdy = - ccp,), -t PI+, - mc)J dx dy = 
D 

s 9, ((acp, - CR,) dy - Pi+, - a~,)) dx = 
r 

SS( a%2 - ~CCP,CP, + NV21 ck dy = J + 2mK 
D 

The relationship (1.7) can be written as follows : 

fil 
i S-M 
m min,J 

Hence, and from (1.5) ( 1.6) we finally obtain 

K*= maxr K (r) = - minr min, & 1s @pX2 - 2cg~&, + brpv2 + Zmrf) t&t!;: 

Therefore, the initial optimization proble% (1.1) - (1.4) has been reduced to the va- 
riational problem (1.2), (1.3), (1.8). To solve the problem ( 1.2), ( 1.3) (1.8), the mini- 
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mum with respect to up and r should be calculated successively. The inner minimum 
with respect to i-p in (1.8) is calculated for a given shape of the contour I’ and the boun- 
dary condition (I. 2). The outer minimum with respect to I‘ is sought under the isope- 
rimetric condition (1.3). 

2, The necerrxry condition for &II extremum* We consider the vari- 
ational problem (1. Z), (1,3), (1.8) and derive the conditions satisfied by the extremals 
(the contour r and the function q~ (2, Y)). To this end, we write the expression for the 
first variation of the integral (1.8) 

Here the Sf denotes the normal displacement of boundary points. Since the condition 
(1.2) holds on the contour l” , then 6cp = 0 ((s, y) E I’), and therefore, the second 
integral in the right side of (2.1) is zero, Moreover, the term 2m(p in the third integral 
vanishes as a consequence of condition (1.2). Furthermore, usmg the arbitrariness of the 
function &J as well as the extremum condition 8J = 0 and standard reasoning [3] ,we 
obtain that the function cp (z, Y) which determines the extremum of the functional under 
consideration makes the expression in the square brackets in the first integral of (2.1) 
zero. The Euler equation in cp agrees with (1.1). We henceforth assume that the function 
QI satisfies this equation. Consequently for the first variation to vanish (6J = 0) it is 
necessary that the equality 

f ( @ aqG2 - %& + &U2) as = 0 (2.2) 

holds. 
r 

According to (1.3), the variation Sf should satisfy the following isoperimetric condi- 

1 Sf&=O (2.3) 

From (2.2) and (2.3) we have 
1. 

%cs - %z&/ + @I/Z = a2, (& I/) E r (2.4) 

where A2 denotes an unknown constant (Lagrange multiplier). Condition (2.4) determines 
the optimal contour and closes the boundary value problem (1. l), (1.2) together with 
(1.3) (the value of the constant h2 is determined from (1.3) ) . 

8. Optfmrl rhrpo of x twfrtod elrMc brt, We consider the problem 
of torsion of an elastic anisotropic bar in a rectangular xyz coordinate system. Let the 
z -axis be parallel to the bar axis. Symbol I) denotes the domain of a transverse sec- 

tion through the bar by the xY pl*ne, X’ is the boundary of the domain D. We assume 
the bar to be continuous and, therefore, the domain D is simply connected. Let the tor- 
sion occur around the z-axis. We express the nonzero components of the stress tensor rXL. 
and ZVz in terms of the stress&nction g, (3, yf using the following relationships: 

t zz = f%i, r,z = - (hi& (3.1) 

where 8 is the angle of twist per unit length of the bar. The stress function cp (a~, Y) is 
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determined (see [4]) from the solution of the boundary value problem for the equation 

acp, - k(p, + bcp, = - 2 (3.2) 

with boundary condition (1.2). The a, b, c in (3.2) denote the strain coefficients of the 
anisotropic material. These coefficients satisfy conditions (L 5) (see [4]). Let us assume 
the bar length and volume given. This assumption results in the isoperimetric condition 

(1.3). 
We pose the problem of seeking the bar shape (the shape of its cross section D) for 

which condition (1.3) is satisfied and the maximum bar stiftkss under torsion is achieved 

K = 2SSrpdxdy-+maxr (3.3) 
D 

The torque M, the stiffness K and the angle of twist 0 per unit length of the bar 
are connected by the relationship M = KO. 

The optimization problem (3.2), (3.3) formulated is a particular problem relative to 
(1.1) - (1.4). and hence, condition (2.4) can be used to determine the optimal shape of 
the bar. The solution of the boundary value problem (L2), (2.4) (3.2) with condition 

- 2cxy - aya 1 (3.4) 

l-: bxe + 2cxy + ay8 = n-V J/-m (3.5) 

The stiffness of a bar of the optimal section (3.6), calculated on the basis of (3.3) - 
(3.5) is 

K,= ‘> 
2n I/ah-cCB (3.6) 

Let us compare the stiffnesses of bars of optimal cross section (3.5) and circular cross 
section. Taking into account that the stiffness of a bar of circular section is K. = Sa / 
SC (a + b) and assuming the cross-section artis of the bars to be equal, we arrive at the 
following formula to estimate the gain due to optimization 

K,-KQ 
Ko 

The deformation coefficients a, b, c of an anisotropic material satisfy the inequalities 
(1.5). Taking this into account, it is easy to show that 0 < p Q 1. For an orthotropic 
materialc=O,a= 1/G,, b = 1/G,, where Gi and Gl denote the shear moduli corre- 
sponding to the z and y coordinates. In this case, the efficiency of the optimization is 
estimated by the formula (K., - R,) / K, = (Gl + G,) / 2 m- 1. It is seen from 
this relationship that the gain due to optimization increases both as G1 / Gs -_, 0 and as 
Gx / 6s -, 00, i.e. the relative gain increases as the degree of anisotropy increases. The 
minimum gain, zero, is obtained for G1 = G, = G, i.e. for an isotropic material. In 
this case K+ = K, = GS* / 2n, and the optimal section is a circle. 

Optimality of a circular section for a bar of homogeneous isotropic material has been 
proved on the basis of the theorem on symmetrization in [5]. 

We note that the optimal&y condition (2.4) for a bar from isotropic homogeneous 
material means constancy of the tangential stress on the contour r. In fret on the basis 
of(3.1)and(2.4) (c = 0, a = b = 1 /G = con&) ,wehave 

2s = rxz2 f ry> = 0s (cp? + (pr2) = const (3.7) 
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If only a part of the contour l?i is varied while the rest r, is kept fixed, the form of 
the optimality condition on the required curve remains as before. 

Note that condition (2.4), or equivalently, condition (3.7) can be given a more uni- 
versal form in the case of a homogeneous isotropic material and this condition is used 
below in this form, To do this, let us pass from differentiation with respect to the coor- 
dinates z, y to evaluation of the derivatives with respect to the tangential and normal 
directions to the contour l? . Taking account of condition (1.2), we arrive at the follow- 
ing relation: 

(&p/an) = hS, (z, y) E r (3.8) 
where As is a known constant. 

N o t e 1. Determination of the. shape of an elastic bar possessing minimum cross- 
sectional area, or equivalently, minimum weight for a given stiffness,reduces to a dual 
problem. Carrying out an analysis completely analogous to that presented in Sect. 1 
permits elimination of the differential constraint and reduction of seeking the boundary 
of the cross-sectional domain to the solution of the following isoperimetric variational 
problem : 

K= -$- min,J = K’, S = dzdy-rmh+ 

where K’ is a given constant. The solution of this problem is found from (3.4) - (3.6) 
by a simple computation. We have 

I’: bx* + 2exy + ayt = (ab - G)‘h vm, S = vw (ab - 3” 

for the optimal contour and the minimizing functional. 
Note 2. Maximizing the stiffness of a bar of inhomogeneous elastic material is 

possible also because of the optimal dlstrlbution of inhomogeneities over the section. 
Paper [6] is devoted to this question. Another problem of optimizing an inhomogeneous 
bar was solved in [‘I& where the optimal mutual disposition of materials over a section 
was sought under the assumption that the bar is compared of two materials with different 
plasticity constants. All the analyses in [7] were conducted within the framework of the 
theory of ultimate plastic design. 

4. Stiffaw optimirrtfon problem8 in tha C&II of a nat rimply 
coanectod raction. We consider the problem of torsion of a homogeneous lsotro- 
pit prismatic bar with a section not simply connected. For brevity in the exposition,we 
consider the cross-sectional domain D to be doubly-connected. Symbols I’@ and r de- 
note the inner and outer boundary of the domain D , respectively. For given boundaries 
I’,, and I? the tonion problem reduces to seeking a stress function cp (z, I/) from the 
solution of the boundary value problem m, 83 

cp,+ (PI/u= -2 
= 0, (x, p) E r; CP = c, a (5, Y) E r. 

(4.1) 
cp (4.2) . - 

(4.3) 

where hl is the area of the domain bounded by the contour I?,,. The constant C in 
(4.2) is an unknown quantity and condition (4.3) is used to determine it. The following 
expressions hold for the stresses ‘r,.., z,, and the torsicnal stiffness K : 
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(4.5) 

The function cp connected with the stress tensor components by means of the relation- 
ships (4.4), differs by a constant factor G (the shear modulus) from the stress function 
introduced in the preceding section using (3.1). The case of a homogeneous isotropic 
material, when c = 0, G1 = G2 = G , is kept in mind. In psrticular, this explains 
the stiffness hr defined according to (4.5) having a dirne~o~~~ of a fourth power in 
the length and differing from the stiffness K’ in Sect. 3 by the factor G (K’ = GK). 

The contour I’,, , and the area $2 of the don&n bounded by this contour are thereby 
assumed given, The area of the domain D bounded by the contours FO and I’ is also 
considered given, The boundary I-’ is fixed beforehand and is to be determined. 

The optimization problem consists of seeking the shape of the contour r which will 
maximize the functional (4.5) under the conditions (1.3),(4.1) - (4.3). 

It can be shown that the condition to determine the optimal contour I’ remains as 
before and agrees with (3.8) in the case of the doubly-connected domain under conside- 
ration. 

To obtain this condition, let us use a. method which can be applied even in the case of 
an arbitrary n+onnected domain. We introduce the torsion hrnction 91 connected with 
the stress function tp by the relationships 9% = (py .+ Y, $11 = - ‘pX - X. We have the 
following Neumann problem for the function so introduced: 

&_x+$/,=o? @,Y)ED; ~=Yy-zn,, (s,Y)Er(&+r (4.6) 

where n,, rzt, are projections of the unit normal to the boundary of the domain D on the 
2 and Y axes. The bar stiffness K is computed in terms of 9. from the formula 

K=Zi- (zlllt,-2/$)dxdy. ss Z = SS (xa+y3dzdy (4.7) 
D D 

The torsion function can be found for given boundaries of the domain D by solving 
the variational problem [23 

- YP + t$, -I- @*I dz dy - min+ 

We note that it is not here required that the comparison functions 9 should satisfy 
the boundary condition (4. ‘7) since this condition is “natural” for the functional (4. 8). 
We have J, = l/s K (see [2]) for the function 9 achieving the minimum of the integral 
(4_ 8) (and not for an arbitrary comparison unction), This relationship permits writing 
the optimization problem as follows: 

K, = maxr min$J1 (4.9) 

The maximum with respect to I in (4,9) is computed under the isoperimetric condi- 
tion (1.3). Furthermore, writing down the expression for the first variation in the integral 
J1 and noting that the constraint fS@s = 0 holds because of (1.3) (the integral is taken 
over the contour I), we obtain an equation and boundary conditions (4.6) as the neces- 
sary conditions for the extremum as well as a condition of the optimality of the contour 
r 

(9x - y)’ + (qtl + z)~ = const (4.10) 

Returning to the stress function q in (4. lo), we arrive at the condition qQ + q$,’ = li‘, 
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which can be written in the form of (3.8). 
Let us study some properties of the optimal solutions. Applying the Bredt theorem to 

the contour I: and using the optimality condition (3.8). we obtain an expression relat- 
ing the value of the constant h from (3.8) to the length I of the optimal contour and 
the area $2 + S 2(Q_tS) = - 

s 
+S=hl (4.11) 

I? 
In particular, h # 0 and h # 00 follow from (4.11). 

We show that the optimal contour is smooth and has neither projecting nor entering 
angles. Reasoning the converse, let us first assume the presence of a projecting angle on 
the optimal contour. Then approaching the apex of this angle along the contour r we 
will have z = atp I dn + 0 (see @I, for example), and therefore the condition li, # 0 
is violated in this case. NOW, we assume that there is an entering angle on the contour 
I’ Then ap~oaching the vertex of this angle along I’ , the quantity x = $9 f an tends 
to infinity, and therefore, the assumption 2, =f= 30 is violated. 

6. Determination of the optimal ahape by the amrll parameter 
method. We obtain the solution of the problem examined in Sect.4 in the case of a 
thin-walled bar. For convenience, the new coordinate system ,st related to the reference 
line r. is introduced. The coordinate S of the point P E I) is measured along r. 
from some point 0 E l7, to the intersection A of r. with the normal (to PO) pas- 
sinp, through the point P. The coordinate t equals the length of the segment AP. Let 
P = p (s) and h = h (s) denote the radius of curvature of the reference line r, and 
the equation of the contour I?. 

The assumption about the bar being thin-walled means that (t is the length of the 
contour r,) 

nHkX’,k (s) = H<L (O<s<L) 

i.e. theratio H/L= e is a small number (a < 1). 
Let us assume that the contour I?,, has no strongly curved sections, i.e. that 

m1n, p (s) - L (5.1) 

We write the main ~latio~~~ (1.3),(3.8), (4.1) - (4.3) and (4.5) in the new coor- 
dinate system and pass to new variables and notation 

a= Ls’ ) t = Ht’, h = Hh’, cp = HLq’, 52 = L=Q’ (5.2) 

5 = HLS’, p = Lp’, K = HL3K’, c = HLC’, h = Lh’ 

(we henceforth omit the primes). We obtain 

(2’~)~ + a* (PqJ, = - l&T, T = 1 + et 
P 

(5.3) 

‘Pt ($9 h)= - h, ‘p (s, 0) = c, cp (s, h) = 0 
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To solve this problem, we apply the small parameter method and we seek the functions 
cp, h and the unknown constants C, h and K as series in the parameter e 

q = (p” + erpr + as@ + . . . (5.4) 

Analogous expansions are used for h, C, h and K . 
We write down the equations to determine the zero, first and second order approxima- 

tions. To tbis end we substitute the representation (5.4) into the relations&p (5.3) and 
equate terms with identical powers of 8. We consequently arrive at boundary value prob- 
lems whose successive solution permits the determination of all the quantities required. 
To determine the zero order approximations, we have the following boundary value pmb- 
lem 

(Ptt* =o, cp” (8, 0) = c”, cp” (s, h”) = 0 (5*5) 

‘P; (s, h”) = - h” (5.6) 
1 

s 
(p;(s, 0)&s = - 28, &S (5.7) 

0 0 

Taking account of the properties of the required zero approximation functions, we write 
the boundary value problem for the first approximation 

r&t’ = - 2 - p-%tO, ‘p’ (a, 0) = C’, q.9 (s, h”) -_ 0 (5.8) 

q+” (a, h”) = - hi (5.31 
1 1 

s cp?@* 0) ak; = 0, 
s 
h'ds=-+\- 1 We ds 

p 0 0 0 

(5.10) 

The boundary value problem for the second order ap~maff~, taking (5.5) -( 5.10) 
into account, has the form 

%t2 = -P-l [@P,‘)f + 2rl - cp*.“* vs (s, 0) = cs (5.11) 

‘pa (s, ho) = Vh’ -j- hoh2 

‘pt2 (s, hq = (2 + p-‘A?) hl - A2 
1 1 

s 
'P?@, O)h = 0, 

s 
hs&=r- 

' h”hl 

0 
s 

- ds 
0 p 0 

Using the appropriate relationships from (5.3), (5.4) and (5.5), we obtain the following 
expression for the stiffness: 

K=K”+eKr+esKs+...= 2c”Q + 2e 15 iqf-‘dt ds + OQ) + (5.W 

2ee (5 yq9 dt ds + CQ) + 0 (sa) 

00 

00 

We find the solution of the problem in tie zero approximation. It follows from the 
equation and boundary conditions (5.5) that (p” = c” (1 - t / ho). The expression for 
rp” and the optimality condition (5.6) yield ho = c” (A“)-“. Substituting the functions 
(p” and ho found into the isoperimetric condition (5. ‘I). we find the constants ho and c” 
We finally have 

ho = S, qP = 2SL? 1 ( +, K”=4SW, h”=252, c=asn (5*W 



Variational problem with unIa~own boundaries and determination 
of optimal shapes of elastic bodies 

1045 

Thus, in the zero approximation the optimal thickness distdbution k constant in the 
case of slight curvature of the contour r. (the assumption (5.1)). 

Let us determine the first approximations. To do this, we integrate (5.8) and determine 
the integration constants from the boundary conditions (5.8), while the function hl and 
the constants h’ and Cr from the relationships (5.9) and (5.10). We consequently obtain 
the following expressions for the required first approximation: 

(5.14) 

2SR(rI,-$)t+P-ansYI, 

p = S’ (I- 2Q&), hl = 2s (I- MI,), K’ = 4!w(l- Ql-L) 

The influence of the curvature of the inner contcur IlYe on the optimal shape of the 
outer boundary r is taken into accamt in formula (5.14) for hr. The expression for the 
optimal thickness distribution of the bar 

h = ho + eh’ = S (1 - 8 Sl2p) 

(in the dimensional variables h = SL-1 (1 - S / 2pL)) shows that the thickness h 
decreases as the curvature for appropriate points of the contour r0 increases. 

Analogously, by solving the boundary value problem (5.11). all the required second 
approximation quantities are determined. We present the expressions famd here for hs 
and the constant C2 hi = _ ~9 

2p9 3+ ( 
$-4fm2-pI,) 

1 

- 2rIl) + 2S%u-I~~, l-I, = 
s n 

(5.15) 

The correction Ka is determined by using the constant Ca and the appropriate zero 
and first approximations in (5.12). 

Using the expressions found and passing to the original dimensional quantities (5.2), 
we obtain the following formula for the stiffnesaof an optimal bar (in dimensional vari- 
ables) : 

K=++~ (1 +~~)+$g[3Q$$).+ (5.16) 
0 

Let us estimate the gain obtained by the optimization. To do this, we oonstruct the 
solution of the torsion problem for a bar with a constant thickness distribution h along 
the contour I’,,. Without presenting the corresponding computations, which am mainly 
analogous to those described above, we write down the expression for the difference 
AK = K - K’ between the stiffnesses of an optimal bar and a constant-tbicknessbar 
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Applying the Cauchy-Buniakowski inequality to this expression, we conclude that AL\K > 
0. As is easy to note, the equality AK = 0 is realized for a circular contour, In this 
case the optimal thickness dis~bution is constant. 

The solution (5.13) -(5.15) has been found under the assumption (5.1). We investi- 
gate another case when min, p (s) - H, i. e, the case of sections of large curvature be- 
ing present on the contour F0 Let us again examine the optimization problem in the 
variables (5.2) with the sole difference that now p = ffp’..The main relationships of 
the problem are obtained from (5,3) by replacing the expression e I P by 1 / p in (5.3). 
We use the smalI parameter method and seek the solution in the form (5.4). -We limit 
ourselves to determining the zero approximations, which satisfy the following system of 
relationships : 

[(i+$, c+o, cpO(s, O)==P, (pO(s, ho)=0 

1 1 

e+( (s, R”) =I: - ho, \ q$= (s, 0) ds = - 252, ’ li 
0 0 

Solving these relationships, we obtain the following expressions for the required quantities 

It is seen from the second formula in (5.17) #at the thickness of an optimal bar is vari- 
able even in the zero approximation. If the curvature 1 / p grows as s (0 < s < 1) in- 
creases, then according to (5.17) the function h” (s) will decrease. It is also seen from 
(5.1’7) that the thickness distribution of an optimal bar on sections with slight curvature 
is constant to a sufficient degrei: of accuracy. This agrees with the results obtained above. 

The optimal thickness distribution can similarly be investigated as a function of the 
curvature of the contour I0 on sections for which p _ emH (m > I). Without presenting 
the computations, which are similar to those presented above, we indicate the final result, 
We have the following asymptotic representation p = h” exp (-- y / ho) for the required 
dependence, where Y is an arbitrary constant. 

The author is grateful to B. L. Karikhal for useful discussions of the results of this paper. 
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Using a quasi-stationary formulation, we investigate a boundary value problem 
on deformation of isotropic rheological media in a wedge-like region. The de- 
formation of the medium is caused by variation in the angle between the plane 
sides which together form a plane diffuser, and by the flow rate of mass through 
this diffuser. The wedge faces are assumed to be perfectly smooth. Notwith- 
standing the particular properties of the medium, we succeed in determining 
the displacement field to within a single arbitrary function independent of the 
polar angle, with all boundary conditions of the problem satisfied. We show that 
with the quasi-stationary formulation of the problem the partial derivative with 
respect to time is obtained in terms of the partial derivative with respect to the 

diffuser angle of opening and the mass flow rate, with both these quantities as- 
sumed to be variable. The formula for the partial derivative with respect to 
time enables us to express any kinematic characteristic (velocity, deformation, 
rate of deformation, etc. ) in terms of the displacements. We successfully inte- 
grate the equations of equilibrium and determine the stress field to within a 
single arbitrary function independent of the polar angle. In this manner we re- 
duce the solution of the boundary value problemsondeformation of continuous 
media in a wedge-like region with smooth faces to determining the dependence 
of two arbitrary functions on the radius, that is, after substituting the stress and 
displacement fields obtained into the defining equations of the medium in ques- 
tion. 

Some of the problems on deformation of continuous media in wedge-like 
regions have been solved. Thus we have the Hamel solution [l] of the problem 
of flow of a viscous fluid through a diffuser, and the Schield solution [2] of the 
process of extruding a rigid-plastic material through a wedge-like die. Several 
solutions of the problems on small plane deformations of a nonlinearly elastic 
wedge are given in the monograph [3]. Exact solutions of the problems oflarge 
deformations of an incompressible elastic wedge with arbitrary elastic poten- 
tial were obtained in [4]. In addition, numerous results of investigations of de- 
formation of continuous media in wedge-like regions appear in [5] and others. 


